ANÁLISE DO PROCESSO PRODUTIVO DO LEITE NA AGROINDÚSTRIA DO IFMG - CAMPUS BAMBUÍ

Franciele Cláudia MARTINS¹; José Willer do PRADO²; Patrícia Carvalho Campos³

- ¹ Aluno do curso de Bacharelado em Administração
- ² Aluno do curso de Bacharelado em Administração

³Professora Substituta do curso de Bacharelado em Administração do IFMG – Campus Bambuí

RESUMO

O agronegócio tem um papel importante na sociedade brasileira e, dentro deste setor, destaca-se a produção nacional do leite. Neste sentido, o presente estudo tem por finalidade, verificar se as práticas do processo produtivo pesquisado estão em consonância com as teorias abordadas. O objetivo do presente estudo é analisar o processo produtivo da pasteurização do leite tipo C em uma agroindústria inserida no Instituto Federal de Educação, Ciência e Tecnologia Minas Gerais Campus Bambuí, voltada para a demanda interna e também utilizada como laboratório para as práticas acadêmicas dos alunos do Instituto. A pesquisa pautou-se por uma abordagem qualitativa sendo esta descritiva, caracterizando-se como estudo de caso, com base em dados primários (entrevista semi-estruturada e a observação direta). Por estes métodos, obtiveram-se parâmetros acerca do processamento do leite pasteurizado, logística e materiais, arranjo físico, fluxo do processo, armazenagem, qualidade, embalagem, rotulagem e o tratamento de resíduos. A partir dos resultados, concluiu-se que nem toda a prática realizada na agroindústria está em consonância com as teorias abordadas. É possível que, se a prática rotineira e a abordagem teórica estivessem relacionadas, o desempenho da agroindústria seria diferente dos atuais.

Palavras-chave: Agroindústria, produção de leite, pasteurização.

INTRODUÇÃO

O agronegócio tem um papel importante na sociedade brasileira que, outrora, era basicamente agrícola. Hoje, o agronegócio é fonte de renda para várias famílias, além de contribuir com as exportações e influir diretamente no crescimento da riqueza nacional e no aumento do PIB.

O agronegócio brasileiro vai registrar expansão acima da média em 2011. A estimativa é da Confederação Nacional da Agricultura (CNA), que atribui aos altos preços das commodities, à forte demanda interna e externa e à redução dos custos de produção a projeção de um avanço mais acelerado no campo neste ano. Com isso, o faturamento dos 25 produtos agropecuários vai crescer 3,65% e atingirá 261 bilhões de reais no período (FRANCO, p.3, 2011).

É dentro deste setor que se destaca a produção nacional do leite como um dos principais produtos de origem animal. O Instituto Brasileiro de Geografia e Estatística (IBGE), em março de 2011, observa que a aquisição de leite teve aumento de 7% no comparativo de 2010 com 2009, com produção de cerca de 29,1 bilhões de litros em 2009 (IBGE, 2009).

Entre os diversos manuseios que o leite pasteurizado pode receber, está o envase deste produto em embalagens plásticas flexíveis, popularmente chamadas de "leite de saquinho", o que facilita a sua distribuição para o consumidor final. Tendo este produto presença na mesa de muitos brasileiros, tornam-se de grande valia estudos das agroindústrias por meio das práticas de gerenciamento.

Neste sentido, buscou-se estudar uma agroindústria, propondo, como um problema de pesquisa, a necessidade de verificar se as práticas do processo produtivo pesquisado estão em consonância com as teorias abordadas no decorrer do trabalho. O objetivo do presente estudo é analisar o processo produtivo da pasteurização do leite tipo C em uma agroindústria inserida no Instituto Federal de Educação, Ciência e Tecnologia Minas Gerais - Campus Bambuí (IFMG – Campus Bambuí), sendo esta sem fins lucrativos, que é voltada principalmente para a demanda interna e também utilizada como laboratório para as práticas acadêmicas dos alunos do Instituto.

MATERIAIS E METODOS

O presente estudo traz uma abordagem qualitativa a partir de uma pesquisa descritiva, caracterizando-se como um estudo de caso em que se buscou adquirir conhecimento do fenômeno em questão, com base em dados primários e secundários. O estudo de caso é usado em muitas situações para contribuir com o conhecimento de fenômenos individuais, grupais, organizacionais e relacionados. E é também a estratégia preferida quando questões do tipo "como" ou "por que" são colocadas, quando o pesquisador tem pouco controle sobre os eventos (YIN, 2010).

Para alcançar o propósito do estudo, primeiramente, optou-se por construir um referencial teórico. Este referencial tem como propósito dar maior sustentação teórica ao trabalho. Os dados primários foram colhidos por meio de uma entrevista semi-estruturada que foi feita junto ao responsável da agroindústria com um roteiro, contendo 26 perguntas abertas e da observação direta.

RESULTADOS E DISCUSSÃO

Neste item, serão apresentados os resultados e a análise dos dados obtidos a partir da entrevista feita aos funcionários e as informações levantadas através da técnica de observação direta dentro da agroindústria.

Processo produtivo

O processo produtivo Agroindustrial do leite no IFMG – Campus Bambuí se inicia no setor de bovinocultura com a ordenha do leite cru *in natura*, que é transportado, em seguida, para a agroindústria, através de um tanque isotérmico constituído internamente de aço inoxidável, puxado por um trator até a agroindústria.

Já dentro da agroindústria, o leite é pasteurizado e direcionado para vários fins, tais como envase, iogurte, queijos, doce de leite e creme de leite. Logo após, estes produtos são encaminhados tanto para o refeitório da Instituição como para o setor de comercialização.

Segundo o responsável, a agroindústria tem capacidade instalada (devido à máquina de pasteurização) para processar até 1.000 litros de leite pasteurizado por hora. Atualmente, são processados 400 litros de leite por dia, o que é necessário para suprir a demanda da Instituição. O fluxo de processamento do leite pasteurizado, dentro da agroindústria se inicia com a recepção do leite em um tanque, de onde é tirada uma amostra para ser realizada a primeira análise de rotina.

Se a primeira amostra do leite for satisfatória, o leite é bombeado deste tanque para o recipiente (latão) da máquina (equipamento de pasteurização de placas), onde se inicia a pasteurização rápida, que consiste no processo de submeter o leite a temperaturas de 72 a 75°C, durante 15 a 20 segundos (esta máquina é dotada de painel de controle com termo registrador e termorregulador automático, válvula automática de desvio de fluxo, termômetros). Em seguida, ocorre o resfriamento imediato, a uma temperatura de 4 a 5°C. O equipamento realiza o envase do leite líquido, em embalagens plásticas flexíveis de um litro cada, vedando-a, cortando-a e inserindo a data de fabricação e a validade. Logo após, o leite é colocado em caixas plásticas e conduzido para câmara fria, onde permanece armazenado a uma temperatura de 0 a 10°C, até ser transportado em caminhão baú para o centro de comercialização junto com o leite em latões, que será levado ao refeitório. O processo da pasteurização é representado pelo fluxograma na Figura 1.

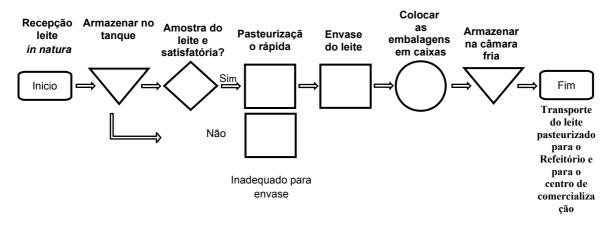


Figura 1: Fluxograma do processo de pasteurização.

Fonte: Dados da pesquisa (2011).

O processo de transformação do leite segue o modelo apresentado por Slack (2009), sendo este, *input*-transformação-*output*, onde a agroindústria se difere de outros tipos de organização pela natureza de seus *inputs e outputs* e pelo processo de transformação.

Logística e materiais

O leite é transportado do setor de bovinocultura até a agroindústria, em um tanque de aço inoxidável acoplado a um trator. Como pode ser visto na figura 02.

Figura 2: Transporte do leite *in natura*. Fonte: Dados da pesquisa (2011).

Este meio de transporte é considerado adequado, pois mantém o leite resfriado, conservando as suas propriedades e beneficiando todos os membros da cadeia produtiva: setor de bovinocultura, agroindústria e consumidor. Dentro da agroindústria, existe um planejamento, que direciona a quantidade diária de leite, para atender a cada demanda, sendo esta o setor de comercialização e do refeitório. Levando em consideração a Nova Legislação de Produtos Lácteos na Instrução Normativa 51/2002 (BRANDÃO, 2002), a coleta de leite cru *in natura*, feita pela agroindústria, está de acordo com o procedimento de recolher o produto em caminhões com tanques isotérmicos construídos internamente de aço inoxidável, através de mangote flexível.

Armazenagem

Na armazenagem do leite na agroindústria, existe um processo logístico onde o primeiro que entra é o primeiro que sai (PEPS). Isto é utilizado especialmente devido ao produto ter características perecíveis, sendo que o leite não pode ficar estocado na câmara fria (Figura 3) por mais de quatro dias.

Figura 3: Armazenagem na câmara fria. Fonte: Dados da pesquisa (2011).

O processo de armazenagem está em consonância com a teoria apresentada por Behmer (1987), no qual o tratamento através do resfriamento é de suma importância para retardar a multiplicação da flora microbiana, sendo que, logo após resfriado, o leite ainda deverá ser mantido em câmaras frias.

Qualidade do produto

O controle realizado na agroindústria tem início na análise de rotina na recepção do leite, na qual um dos funcionários da agroindústria colhe uma amostra do leite e realiza a verificação da acidez do leite. Os outros testes que verificam a quantidade de gordura, densidade e mastite também são feitos através de um processo de análise microbiológica.

Antes do envase, é lançada na tubulação a substância hipoclorito de sódio (cloro) para a limpeza, que tem como objetivo manter a higiene da tubulação antes da pasteurização. A medida adotada, para manter a qualidade do leite durante o processo de envase, é a esterilização das embalagens, já dentro da máquina de envasamento, por uma lâmpada ultravioleta. Depois do envase, é lançada, na tubulação para a limpeza, uma mistura de soda cáustica (250 g/dia) e, depois, uma mistura de ácido nítrico (250 ml/dia), diluídos em água e aquecidos dentro da tubulação a uma temperatura de 90°C. Cada processo demanda 30 minutos para ser concluído, o que gera 1 hora no processo total de limpeza das máquinas e tubulações, sendo necessário, ainda, uma última lavagem com água para retirar os resíduos.

Referente ao controle de qualidade do leite na agroindústria, tanto a teoria de Toledo (1993) *apud* Scalco (2004) quanto a de Campos (2004) são levadas a termo no que se diz respeito à confiabilidade do produto, mantendo características saudáveis e buscando atender à satisfação das necessidades dos clientes.

Embalagem e rotulagem do produto

O leite é condicionado em uma embalagem plástica flexível (Figura 4), o popularmente conhecido "saquinho de leite" e o funcionário responsável afirma que esta embalagem é a mais apropriada, tendo como base o tipo do leite que é envasado (leite tipo C). Cabe ressaltar que a função da embalagem é proteger os

nutrientes e o sabor do leite e que, apesar de os filmes plásticos serem a principal embalagem para o leite pasteurizado, essa opção não protege suficientemente o produto contra a luz.

Figura 4: Embalagem plástica flexível da agroindústria.

Fonte: Dados da pesquisa (2011).

A embalagem do leite produzido na agroindústria não gera diferencial competitivo no que diz respeito às diversas tarefas de venda que ela pode proporcionar, segundo Kotler e Amstrong (2007), e não apresentam nos rótulos todas as informações. Já dos três aspectos que Ballou (2007) destaca, o primeiro não foi atendido como citado por Kotler e Amstrong (2007) que é a promoção. Porém, as demais, que são a proteção para o produto e aumento da eficiência por meio da distribuição física, foram atendidas pela agroindústria.

Resíduos

Os funcionários reconhecem que não existe nenhum sistema para tratar os resíduos gerados pelo processo de enxágue na produção. Estes efluentes contêm substâncias como o acido nítrico, soda caustica hipoclorito de sódio (cloro) e, além destas substâncias químicas, podem conter gordura, sólidos orgânicos e inorgânicos. Todos estes resíduos vão para a rede de esgoto, sendo que este material lançado em recursos hídricos pode proporcionar uma queda na concentração de oxigênio e, com isso, provocar a morte de peixes e outros animais, por asfixia.

Os funcionários estimam que a água utilizada em todo o processo de pasteurização seja em torno de 100 litros para a limpeza (tanques, centrífugas, pasteurizador, homogeneizador, tubulações, latões, etc.), além da água utilizada para lavar utensílios, o chão e o tanque de transporte. Não há um procedimento que possibilite utilizar uma quantidade menor de água para o processo, nem há controle exato dos efluentes gerados. Como observado por Brião (2000) *apud* BRUM et al. (2009), o volume de efluentes gerados pelas usinas de beneficiamento é alto e, no caso da agroindústria, não são tomadas atitudes preventivas que poderiam amenizar o efeito negativo que o descarte destas soluções provocam.

O processo de colocar o leite pasteurizado em latões é deficiente, gerando um desperdício de matéria prima e de embalagens, tendo em vista que o processo de envase é interrompido e, na própria envasadora, as embalagens são cortadas para direcionar o fluxo do leite até os latões. Sendo assim, alguns dos processos que geram resíduos estão representados na Figura 5.

Figura 5: Processos que geram resíduos.

Fonte: Dados da pesquisa (2011).

CONCLUSÃO

Em virtude dos aspectos observados no processo de transformação do leite, conclui-se que o modelo de input transformação output é utilizada na agroindústria em questão.

A logística de materiais dentro da agroindústria é feita com planejamento. Em contrapartida, não existe uma integração entre o fluxo de materiais e a distribuição física. O arranjo físico está disposto de maneira inadequada, dificultando o fluxo de pessoas e o do leite. A forma mais eficaz de se disponibilizar o espaço físico é através de um *layout* de produção adequado, tendo, como princípio, a produção em linha (em L ou em U).

Já a armazenagem é feita de forma eficiente, no intuito de retardar a multiplicação da flora microbiana, sendo que, no final, o leite é mantido em câmaras frias.

A qualidade do produto é satisfatória no que se refere aos processos de limpeza e às características que comprometam a saúde. Já o controle de qualidade físico-química é feito antes do processo e o controle microbiológico é feito depois do leite processado. Este controle deve ser realizado antes do processo e, para ser eficiente, deveria ser integrado em toda a cadeia produtiva.

A embalagem utilizada é apropriada, mas não gera diferencial competitivo. Já os rótulos não apresentam todas as informações exigidas pelas autoridades, devido ao fato de que o órgão fiscalizador, o

IMA, não exerce mais a fiscalização. Já os resíduos se apresentam de forma mais critica, sendo que estes vão para a rede de esgoto, lançados em recursos hídricos e no solo e os funcionários não possuem um controle exato dos efluentes que são gerados, causando assim um risco ambiental. Não são tomadas atitudes preventivas, tais como a minimização da carga lançada, a instalação de um sistema de tratamento dessas águas de enxágue, ou, ainda, a instalação de um tanque para o recebimento do primeiro enxague. Estes procedimentos poderiam amenizar o efeito negativo que o descarte destas soluções provoca.

Este estudo traz a consciência de que, se talvez, as práticas e as teorias estivessem intimamente relacionadas, a agroindústria apresentaria uma análise e uma descrição do processo diferentes dos atuais. As comparações realizadas entre as práticas organizacionais e as teorias abordadas no meio acadêmico são de grande valia para a busca da melhoria dos processos.

REFERÊNCIAS BIBLIOGRÁFICAS

BALLOU, Ronald H. **Logística empresarial**: transporte, administração de materiais e distribuição física. 1. ed. São Paulo: Atlas, 2007.

BEHMER, Manuel Lecy Arruda. **Tecnologia do leite**: Leite, queijo, manteiga, caseína, iogurte, sorvetes e instalações: Produção, industrialização, análise. 15. ed. São Paulo: Nobel, 1987. 320 p.

BRANDÃO, Sebastião César Cardoso. **Nova legislação de produtos lácteos**: revisada, ampliada e comentada. São Paulo-SP: Fonte Comunicações, 2002. 327 p.

BRUM L, F. W.; SANTOS JÚNIOR L, C. O.; BENEDETTI, S. Reaproveitamento de Água de Processo e Resíduos da Indústria de Laticínios. 2nd International Workshop Advances in Cleaner Production (KEY ELEMENTS FOR A SUSTAINABLE WORLD: ENERGY, WATER AND CLIMATE CHANGE), São Paulo, 2009. Disponível em: http://www.advancesincleanerproduction.net/second/files/sessoes/4a/5/L.%20F. %20W.%20Brum%20-%20Resumo%20Exp.pdf>. Acesso em: 18 mai. 2011.

CAMPOS, Vicente Falconi. **TQC – Controle da qualidade total (no estilo japonês)**. 8 ed. Nova Lima – MG: INDG Tecnologia e serviços Ltda., 2004. 256 p.

FRANCO, Luciana. Tendências do agronegócio brasileiro para 2011. **Revista Globo Rural**, São Paulo, p.1, 07 fev. 2011.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística da Produção Pecuária**. [S.I.:S.n.], 2011.

_____. **Produção da Pecuária Municipal**. Rio de Janeiro-RJ: [s.n.], 2009. v. 37, p.1-55.

KOTLER, Philip; ARMSTRONG, Gary. **Princípios de marketing**. 12. ed. São Paulo-SP: Pearson Prentice Hall, 2007. 600 p. (3ª reimp., ago. 2009).

SCALCO, Andréa Rossi. **Proposição de um modelo de referência para gestão da qualidade na cadeia de produção de leite e derivados**. 2004, 225p. Tese (Doutorado apresentada ao Programa de Pós Graduação em Engenharia de Produção), Universidade Federal de São Carlos, como parte dos requisitos para a obtenção do título de Doutora em Engenharia de Produção. (AGÊNCIA FINANCIADORA: FAPESP), SÃO CARLOS, 2004.

SLACK, Nigel; CHAMBERS, Stuart; JOHNSTON, Robert. **Administração da Produção**. 3.ed. São Paulo: Atlas, 2009.

YIN, Robert K. **Estudo de caso**: planejamento e métodos. 4. ed. Porto Alegre: Bookman,2010.24 8 p.